LD2SD: Linked Data Driven Software Development

Aftab Igbal, Oana Ureche, Michael Hausenblas, Giovanni Tummarello
Digital Enterprise Research Institute (DERI),
National University of Ireland, Galway
IDA Business Park, Galway, Ireland

firstname.lastname@deri.org

ABSTRACT

In this paper we introduce Linked Data Driven Software De-
velopment (LD2SD), a light-weight Semantic Web method-
ology to turn software artefacts such as data from version
control systems, bug tracking tools and source code into
linked data. Once available as linked data, the related infor-
mation from different sources is made explicit, allowing for a
uniform query and integration. We show the application of
LD2SD using a real-world software project as the reference
dataset and discuss the added value of LD2SD compared to
existing technologies.

1. MOTIVATION

In the software development process, both humans and
so called software artefacts are involved (Fig. 1). Human
beings such as developers and clients (customers, project
managers, etc.) typically interact not only face-to-face or
telephone, but also by means of discussion forums, emails,
etc.. The software artefacts shown in the lower half of Fig. 1
can be understood as heterogeneous, interconnected datasets,
conveying information about the software project and the
humans involved.

It is worth mentioning that very often these interconnec-
tions are not explicit, hence machine-accessible but rather of
an implicit nature (a mentioning of a certain Java class in a
blog post, for example). Further, some of these datasets,
such as the program source code or versioning data are
mainly under the control of a developer, whilst other datasets
are widely “filled” by clients. Then, there are datasets that
are shared between developer and clients (e.g., a discussion
board). In any case, the datasets are closely related and
interdependent. A bug report, for example, may lead to a
change in the program code and additionally the documen-
tation needs to be updated. This may be reflected in the
configuration management system. Further, a feature re-
quest may indirectly arise from a discussion on a discussion
board, for example.

Nowadays, development takes place mainly in two envi-
ronments, (i) the developers Integrated Development Envi-
ronment (IDE), such as Eclipse’, and (ii) the Web, such as
for finding examples and documentation, discussions, etc.
as a large. We need hence not only make the links between
the software artefacts within a project explicit but also al-

"http://www.eclipse.org/

® ®
=+——+>0@

developer client

[
feature
requests

Ec|
developer
discussion

board

documentation

specification

c
source
code
configuration
test data 0] management
(releases, etc.)
version

control

software artefacts

Figure 1: LD2SD Overview.

low connecting to data on the Web. Having such an explicit
representation of the connection between the datasets avail-
able we will be able to support certain scenarios often found
in the software development process:

1. Synthesis Scenarios—support the development of
new source code:

e A developer could effectively query colleagues for
support (expert finding) and/or being suggested
contextualised code fragment(s);

e A project manager could learn from previous projects

and/or metrics.

2. Analysis Scenarios—support the project manage-
ment and maintenance of existing source code:

e One could perform opinion mining on SIOC [§]
based representations of the discussion forums [19]
in order to generate reports on a component or ex-
tract features requests and/or bug reports. SIOC
(Semantically Interlinked Online Communities) is

a vocabulary to describe the content and struc-
ture of online community sites. It allows to create
new connections between discussion channels and
posts;

e Given that the documentation is interlinked with
the source code, a dynamic FAQs could be pro-
vided;

e Developer profiles, based on their commitments
to versioning control systems and the source code
could be provided.

The contribution of this work is twofold: first, we intro-
duce Linked Data Driven Software Development (LD2SD),
a light-weight Semantic Web methodology to turn software
artefacts such as data from version control systems, bug
tracking tools or Java source code into linked data. Further,
we show the application of LD2SD on a reference software
project.

The paper is structured as follows: in section 2 we present
use cases for LD2SD. Then, we introduce the overall LD2SD
methodology in section 3 and discuss its characteristics in
section 4. We report on exemplary implementation of LD2SD
in section 5. In section 6 we review related work and com-
pare it to our approach. Finally, we conclude in section 7
and outline future steps.

2. USE CASES

As motivated above, there are plenty of real-world scenar-
ios one could think of where explicit interlinks between data
sources would be desirable. We have detailed out a couple
of use cases in the following which we realise in the realm
of the software development. The use cases described below
have in common that at least two data sets are involved.
Note, that in case only one data set (such as bug tracking)
is targeted, various solutions (cf. section 6) already exist,
potentially not justifying the effort to apply LD2SD .

Finding an expert Jim has a long career in software project

management. He knows that a task will be solved fast
and bug-free only by a developer who is an expert in
the required field. Jim now wants to assign a new task
which involves Web pages scrapping. He needs to find
a member of his team who is an expert in the HTML-
Parser Java library.

Issues not fixed in due time Bug tracking systems con-
tain a lot of issue entries. These issues need to be
fixed on assigned dates. Harry, a project leader, is
very busy, having to travel most of his time. He just
came back from a project review and wants to know
if all the issues due yesterday have been fixed. Harry
additionally wants to know about the breakdown in
terms of lines-of-code committed and which packages
have been effected.

Find developer replacement Mary, a developer for a soft-
ware company, has to relocate with her husband in an-
other city. Julie, her supervisor, needs to hire a devel-
oper who can replace Mary. Therefore, Julie wants an
analysis of her expertise and latest activities: assigned
bugs, committed code, mailing list and blog posts, sub-
sequently finding CVs that match Mary’s expertise.

Assigning a bug to a developer Bug tracking environ-
ments structure bugs assignment by projects. John, a
user of project X finds a bug and reports it on a blog
post. Sarah, a developer of project Y, reads the blog
post. However, she does not know the project X de-
velopers and their experience. She needs to find the
most active developer in project X and assign the bug
to him/her.

3. LD2SD FOUNDATIONS

We first introduce linked data, the foundation of Linked
Data Driven Software Development (LD2SD), and then give
an account of the LDSD methodology.

3.1 Linked Data

The basic idea of linked data [6] has first been outlined
by Tim Berners-Lee in 20062, where he described the linked
data principles as follows: (i) all items should be identified
using URIs [18] and these URIs should be dereferenceable,
that is, using HTTP URIs allows looking up the an item
identified through the URI, further (ii) when looking up
an URI (an RDF [13] property is interpreted as a hyper-
link), it leads to more data, and (iii) links to URIs in other
datasets should be included in order to enable the discovery
of more data. In contrast to the full-fledged Semantic Web
vision, linked data is mainly about publishing structured
data in RDF using URIs rather than focusing on the onto-
logical level or inferencing. This simplification—comparable
to what the World Wide Web did for hypertext—fosters a
wide-spread adoption [4].

3.2 Methodology

In order to provide a uniform and central access to the
different datasets, one needs to interlink, integrate and align
them. Various techniques could potentially be utilised (see
also section 6), however, given the arguments regarding linked
data above, we decided to realise a linked-data driven ap-
proach. In Fig. 2 the overall LD2SD methodology is de-
picted. This methodology basically covers the layers as de-
scribed in the following:

1. Assign URIs to all entities in software artefacts and
convert to RDF representations based on the linked
data principles, yielding LD2SD datasets;

2. Use semantic indexer, such as Sindice [15] to index the
LD2SD datasets;

3. Use semantic pipes, such as the DERI Pipes (cf. sec-
tion 5.2) allowing to integrate, align and filter the
LD2SD datasets;

4. Deliver the information to end-users integrated in their
preferred environment, such as discussed in section 5.3.

4. LD2SD CHARACTERISTICS

4.1 Scale to the Web

In 2007, the Linking Open Data (LOD) project®, an open,
collaborative effort aiming at bootstrapping the Web of Data

“http://www.w3.org/DesignIssues/LinkedData.html
3http://esw.w3.org/topic/SweoIlG/TaskForces/
CommunityProjects/LinkingOpenData

0 0
(@)
client

developer

%mdwce

=
S
S
S
2
=
=
©
=
=
£

‘

Qe
-

integration

|

Web 2.0 APIs

data

LOD data sets software artefacts in LD2SD

Figure 2: LD2SD Methodology.

by publishing datasets in RDF on the Web and creating
interlinks between these datasets, has been launched. With
over 50 interlinked dataset offering billions of RDF triples
and millions of interlinks, the so called “LOD cloud” enables
entire new application areas [11].

We highlight the fact, that by utilising LD2SD, a Web-
scale data integration of software development-related infor-
mation is hence made possible. One can imagine that—as
both LD2SD and LOD follow the linked data principles—we
are able to connect software artefacts to the LOD datasets,
such as DBpedia [3], hence enabling the reuse of existing
information in the software development process.

4.2 Read-only?

To this end, LD2SD allows us to integrate, view and filter
the data. However, one problem remains unresolved: updat-
ing the original software artefact. With a recently launched
community project called pushback®—aiming at turning the
current “read-only” Semantic Web into a read /write Seman-
tic Web—we are confident to adequately address this issue
in the near future.

S. IMPLEMENTATION

The methodology described in the previous section will
be demonstrated herein. We have divided this section ac-
cording to Fig. 2: in section 5.1, we describe the reference
data set and the interlinking, in section 5.2, we show the
querying of the interconnected datasets using DERI Pipes®,
and in section 5.3 we present some earlier work on Semantic
Widgets.

5.1 Data Layer

We first present a list of candidate software artefacts to be
converted to RDF and then we present a concrete example
to realise some use case described in section 2.

To practice what we preach, we have chosen the Sindice
software project® as the reference software project. In Ta-
ble 1 the details regarding the respective LD2SD datasets

‘http://esw.w3.org/topic/PushBackDataToLegacySources
Shttp://pipes.deri.org/
Shttp://sindice.com/

o o oe W N e

o os W N e

[

1
1
1

are listed, yielding more than 43,000 (43k) RDF triples in
total.
In order to apply the interlinking approach to our soft-

ware artefacts as listed in the previous section we examine
the RDF datasets in the following. An excerpt of an ex-
emplary RDF representation of some Sindice Java source
code is shown in listing 1. Further, an example of some

@prefix b: <http://baetle.googlecode.com/svn/ns/#> .

@prefix : <urn:java:org.sindice.projects.wp.> .

:WPLinkExtractor a b:Class;

b:contained <> ;

b:uses <urn:java:java.awt.Component> ,
<urn:java:java.io.IOExzception> .

Listing 1: An exemplary Java RDFication.

RDFised Subversion logs is shown in listing 2. From the

@prefix b: <http://baetle.googlecode.com/svn/ns/#> .
@prefix : <swn://sindice.com/svn/> .

:bc275 a b:Committing ;

b:added <swn://sindice/wp/WPLinkExtractor. java> .
b:author :oanure

Listing 2: An exemplary Subversion RDFication.

listings 1 and 2, we are able to conclude that both RDF
fragments are describing the same entity, “WPLinkExtrac-
tor.java”. We can interlink” these two RDF fragments as
shown in listing 3 using an owl:sameAs property indicating
that these URIs actually refer to the same entity.

:WPLinkExtractor owl:sameAs
<svn://sindice/wp/WPLinkEztractor. java> .

Listing 3: An Interlinking Example.

5.2 Integration Layer

After RDFising and interlinking the software artefacts,
the next step is integrating the artefacts and query them.

DERI Pipes [16] are an open source project used to build
RDF-based mashups. They allow to fetch RDF documents
from different sources (referenced via URIs), merge them
and operate on them. In our case at hand, this involves four
major steps:

1. Fetch the RDF representation of the Subversion log,
JIRA?® issue tracker, Java source code, etc. using the
RDF Fetch operator®;

2. Merge the datasets using a Simple Miz operator'®;
3. Query the resulting, integrated dataset with SPARQL!!;

4. Apply XQuery'? in order to sort and format the data
from the previous step.

"http://wwwé.wiwiss.fu-berlin.de/bizer/pub/
LinkedDataTutorial/#RDFlinks/

Shttp://www.atlassian.com/software/jira/
“http://pipes.deri.org:8080/pipes/doc/#FETCH
%http://pipes.deri.org:8080/pipes/doc/#MIX
"http://www.w3.org/TR/rdf-sparql-query/
Zhttp://www.w3.org/TR/xquery/

Software Artefact Data Format RDFizer Vocabulary Triples

JIRA Bug Tracker relational data D2RQ [7] BAETLE" 12k

Java Source Code structured data SIMILE RDFizer® SIMILE Java2RDF 22k

Subversion relational data BAETLE RDFizer® BAETLE 7k

Developer’s calendar RFC2445 [10] iCalendar to RDF? iCalendar ° 1k

Developer’s profile FOAF/RDF system specific FOAF/ 1k

Developer blog relational data SIOC exporter? SIOC [S]h not yet implemented
Project Mailing Lists RFC2822 [17] SIMILE RDFizer® SIMILE Email2RDF not yet implemented

Table 1: The Sindice Reference Software Project.

“http://baetle.googlecode.com/svn/ns/

Phttp://simile.mit.edu/repository/RDFizers/java2rdf/

‘http://code.google.com/p/baetle/
“http://www.kanzaki.com/courier/ical2rdf
“http://www.w3.org/TR/rdfcal/
’http://xmlns.com/foaf/spec/
Yhttp://sioc-project.org/wordpress/
Mttp://rdfs.org/sioc/spec/

‘http://simile.mit.edu/repository/RDFizers/email2rdf/

The output of the implemented pipe is then accessible via
an URI

Let’s consider the situation described in the Issues not
fized in due time use case (cf. section 2). The information
we need to process is contained in a JIRA RDF dump'®
describing the issues assigned to a developer, and in the
the developers FOAF!'# files. The state of an issue can be
Open, Closed or Resolved. We are interested in issues that
are Open and that were due yesterday. Further, we want
to display the issue summary and the author full name. In
order to retrieve the information we are interested in, we

apply a SPARQL SELECT query (listing 4) .

1| PREFIX b: <http://baetle.googlecode.com/svn/ns/#> .

2| PREFIX w3s: <http://www.w3.0rg/2005/01/wf/flow#>

3| SELECT ?7issue 7author ?summary ?7due_date

4| WHERE {

5| 7issue b:assigned_to 7author ;

6 b:due_date 7due_date ;

7 b:summary ?summary ;

8 w3s:state
<http://1d2sd.deri.org/data/Bugs2RDF/0Open

9| ¥

Listing 4: SPARQL Query to Select Overdue Issues.

As a matter of fact, SPARQL is currently limited to fil-
ter only specific dates. However, XQuery allows some basic
calculations on top of the resulting SPARQL XML file, as
shown in listing 5. In the XQuery box (see Fig. 4) we can
specify the Content-type:xml/html, allowing us to format
the output using HTML and directly display the result in
a Web browser. The code snippet from listing 5 calculates
the yesterday’s date by subtracting one day from the cur-
rent date (lines 4-5) and renders the summary, author and
issue elements as rows in an HTML table (Fig. 3). In a
second step, the developer’s profiles exposed as FOAF can
be integrated. This would for example mean that the URIs
in the Author-column in Fig. 3 would be replaced by the

Bhttp://1d2sd.deri.org/data/Bugs2RDF/RDFDump . rdf
Yhttp://www.foaf-project.org/

IR S N R C RN

for $b in .//*:result
where xs:date(xs:dateTime($b/*:binding[@name =
"due_date"]/*:1literal))
= xs:date(xs:date(current-date())-
xs:dayTimeDuration ("P1DTOHOM"))
return
<tr style="background:
black;">
<td> { $b/*:binding[@name =
"summary"]/*:1literal } </td>
<td> { $b/*:binding[@name =
"author"]/*:uri } </td>
<td> { $b/*:binding[@name =
"issue"]/*:uri } </td>

#CBE9C7; color:

</tr>

Listing 5: XQuery Filtering by Yesterday’s Date.

Summary

Add documentation generation to
Maven build

Author
http://swm.deri.org:8080/ http://swm.deri.org:8080/browse/
LD2SD/SVN/gareth SINFRA-24
http://swm.deri.org:8080/ http://swm.deri.org:8080/browse/
LD2SD/SVN/michael SMDL-28
http://swm.deri.org:8080/
LD2SD/SVN/andrea

Issue URI

Delete documents based on rules

IndexReader does not count

http://swm.deri.org:8080/browse/
correctly the number of items SMDL-1

Figure 3: Pipe Result in a Web Browser.

respective developer’s full name. Further, by integrating
the developer’s profile data, one can be group developer by
team-membership (for example “core”, “API”, etc.) or ren-
der dependencies on other developers.

In the same manner the data from Subversion can be in-
tegrated in a further step in order to enable the breakdown
in terms of lines-of-code committed or the highlight which
packages have been effected by a certain bug-fix. Conclud-
ing, the more data sets are integrated, the richer the queries
may be.

A screen-shot of a pipe implementing the above example
is depicted in Fig. 4.

5.3 Interaction Layer

The interaction layer handles the interaction between the
integrated data as described above and the end-users, such
as developers. We have shown elsewhere [21] how to utilise

RDF Fetch @0 X
URL:mttD:]fswm.dgrl:Drg:E
Format ;| RDF/<ML | %

RDF Fetch 0 0%
URL: ginttpe ffswmn, deriorg: £
Format | ROF/kL v

S\mp\e YT QO x |

SR

Query:|PREFIX java2ROF: <hiig 2 Woery

Select 00 x

©Wox

Content-Typetext/htm
KQueryxguery version "1.0" dei

(N

[a]
IOutput
o

Figure 4: DERI Pipes.

the datasets using Semantic Widgets. With Semantic Wid-
gets, we provide a methodology to enhance existing Web
applications and deliver aggregated views of information to
end-users. These views are accessed by clicking buttons

6 Responses to "Comment author tracking piugin Open Issues Assigned ToMe Displsying 7 of 7)

[8) rLucies@ Datais notshowing properly

[#) |prugnera

Bug information (PLUGIN-10) 2
O e —

@ [pivomad

Relaled Bugs

a for www2008"
e Openlssuss |

You have no 1

Tasks: Admini
Projects:
lsars

A. SindiceSIOC B. SindiceBaetle

Figure 5: Examples of Semantic Widgets.

which are injected into the DOM of a Web page. For ex-
ample, next to a bug, related information regarding bugs or
dependent bugs is displayed as shown in Fig. 5.

6. RELATED WORK

There are certain technologies in the open source com-
munity available to combine software artefacts. Existing
work related to combining software artefacts has been de-
scribed in Dhruv by Ankolekar et.al. [1], a Semantic Web
system for open source software (OSS) communities. It pro-
vides a semantic interface allowing users to see a detailed de-
scription of highlighted terms in the message posted during
bug resolution in cross-links pages. Their approach extracts
information about software artefacts using information ex-
traction techniques based on noun phrases, code terms and
references to other artefacts. Dhruv is specifically designed
for OSS bug resolution processes.

Another interesting, closely related work has been de-
scribed in [2]. There, a relational database is used to store
information related to version control and bug tracking data.
The source code meta model has been represented using the
Rigi Standard Format (RSF) [20], which is a triple based
specification language that can be easily customised [2]. The
integration of these three artefacts has been done by (i)

querying the relational database, and (ii) merging the re-
sult with the source model RSF files. In contrast to their
approach, we have provided a methodology to integrate the
candidate software artefacts by RDFizing and interlinking
them using linked-data driven approach.

In [12], Kiefer et.al. have presented EvoOnt *°, a software
repository data exchange format based on OWL . EvoOnt
includes software code, code repository and bug informa-
tion. They have used the iSPARQL ' engine which is an
extension of SPARQL, to query for similar software entities.
iSPARQL is based on wirtual triples which are used to con-
figure similarity joins [9]. Their approach differs from our
approach in that we have used DERI pipes to integrate and
query different software artefacts.

Existing work related to our use cases discussed in sec-
tion 2 has been described in [14]. Their approach uses
data from change management systems and heuristics are
based on but are limited to only two software artefacts, i.e.,
for software bugs and source code commits. Contrary to
their approach, we have added developer’s information from
blogs, mailing lists and developer’s profile to realize our use
cases.

In [5], Basili et.al. have presented Experience Factory con-
cept for software development. Experience Factory supports
the evolution of processes and other forms of knowledge,
based on experiences within the organization [5]. Experi-
ences are captured from FAQs, chat logs, emails and project
presentations. In contrast to their approach, we have pro-
vided a methodology to capture knowledge from candidate
software artefacts and interlink them to find a certain ex-
pertise.

Mylyn'® is a sub-system for the Eclipse IDE allowing mul-
titasking for developer and task management. It provides
the means render bug-related data in the Eclipse IDE for
developers to work efficiently in their development environ-
ment without having to log in to the Web based application
to update or create new bugs. The limitation of Mylyn
is that it works only with task repositories such as JIRA,
Bugzilla!®.

Further, there are plug-ins?® which integrates Subversion
with bug trackers, for example Bugzilla or JIRA. The plug-in
displays all Subversion commit messages related to a specific
issue. To the best of our knowledge such Subversion plug-ins
are available for a few bug trackers.

Existing work described above somehow try to address
the integration or interlinking of different software artefacts
but some of them are desktop applications and some are
Web based applications and none of the above described
approaches address all the candidate software artefacts we
described in this paper (see Table 1). Still what is missing is
the existence of a generic framework where all software arte-
facts can be collected and queried that would allow project
managers to get an overall view of the software development
projects.

t15

Bhttp://www.ifi.uzh.ch/ddis/evo/

Yhttp: //www.w3.org/TR/2004/REC-owl-guide-20040210/
Yhttp://www.ifi.uzh.ch/ddis/isparql.html
Bhttp://www.eclipse.org/mylyn/
Yhttp://www.bugzilla.org/
2Onttp://subversion.tigris.org/links.html#
misc-utils

7. CONCLUSION & OUTLOOK

We have motivated and introduced Linked Data Driven
Software Development (LD2SD) as well as demonstrated its
value in a concrete setup in this paper. The basic idea un-
derlying LD2SD is to make the implicit links between
software artefacts found in software development—such
as version control systems, issue trackers, discussion forums,
etc.—explicit and expose them using RDF. By using LD2SD,
one enables a Web-scale integration of data, connecting to
the LOD cloud and enabling the vast reuse of information.

We plan to implement further LD2SD use cases to show
how one can benefit from it, especially when more than two
data sources are involved. We aim to overcome a shortcom-
ing of the current implementation, as it is not 100% linked
data conforming; in certain places we use URNs rather than
HTTP URIs. Additionally we will improve the interlink-
ing, yielding higher-quality and also more links between the
LD2SD datasets.

Acknowledgements

Our work has partly been supported by the European Com-
mission under Grant No. 217031, FP7/ICT-2007.1.2, project
Romulus—“Domain Driven Design and Mashup Oriented
Development based on Open Source Java Metaframework
for Pragmatic, Reliable and Secure Web Development”?!.

8. REFERENCES

[1] A. Ankolekar, K. Sycara, , J. Herbsleb, R. Kraut, and
C. Welty. Supporting online problem-solving
communities with the Semantic Web. In Proceedings
of the 15th International Conference on World Wide
Web, Edinburgh, Scotland, 2006.

[2] G. Antonio, M. D. Penta, H. Gall, and M. Pinzger.
Towards the Integration of Versioning Systems, Bug
Reports and Source Code Meta-Models. In Electronic
Notes in Theoretical Computer Science, pages 8799,
2005.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,

R. Cyganiak, and Z. G. Ives. DBpedia: A Nucleus for
a Web of Open Data. In The Semantic Web, 6th
International Semantic Web Conference, 2nd Asian
Semantic Web Conference, ISWC 2007 + ASWC
2007, pages 722-735, 2007.

[4] D. Ayers. Evolving the Link. IEEE Internet
Computing, 11(3):94-96, 2007.

[5] V. R. Basili, M. Lindvall, and P. Costa. Implementing
the Experience Factory concepts as a set of
Experience Bases. In Proceecedings of the 13th
International Conference on Software Engineering and
Knowledge Engineering, pages 102—-109, 2001.

[6] C. Bizer, T. Heath, K. Idehen, and T. Berners-Lee.
Linked Data on the Web (LDOW2008). In Linked
Data on the Web Workshop (WWW2008), 2008.

[7] C. Bizer and A. Seaborne. D2RQ - Treating Non-RDF
Databases as Virtual RDF Graphs. In 3rd
International Semantic Web Conference, Hiroshima,
Japan, 2004.

[8] U. Bojars, J. Breslin, V. Peristeras, G. Tummarello,
and S. Decker. Interlinking the Social Web with

yttp: //www.ict-romulus. eu/

Semantics. In IEEE Intelligent Systems, 23(8):
29-40,, 2008.

W. W. Cohen. Data Integration Using Similarity Joins
and a Word-Based Information Representation
Language. In ACM TOIS, pages 288-321, 2000.

F. Dawson and D. Stenerson. Internet Calendaring
and Scheduling Core Object Specification (iCalendar),
RFC2445. IETF Network Working Group, 1998.
http://www.ietf.org/rfc/rfc2445.txt.

M. Hausenblas. Exploiting Linked Data For Building
Web Applications. IEEE Internet Computing, N(N):to
appear, 2009.

C. Kiefer, A. Bernstein, and J. Tappolet. Mining
Software Repositories with iISPARQL and a Software
Evolution Ontology. In Proceedings of the ICSE
International Workshop on Mining Software
Repositories (MSR), Minneapolis, MA, 2007.

G. Klyne, J. J. Carroll, and B. McBride. Resource
Description Framework (RDF): Concepts and
Abstract Syntax). W3C Recommendation 10 February
2004, RDF Core Working Group, 2004.

A. Mockus and J. Herbsleb. Expertise browser: a
quantitative approach to identifying expertise. In
Proceedings of the 24th International Conference on
Software Engineering, Orlando, 2002.

E. Oren, R. Delbru, M. Catasta, R. Cyganiak,

H. Stenzhorn, and G. Tummarello. Sindice.com: a
document-oriented lookup index for open linked data.
International Journal of Metadata, Semantics and
Ontologies, 3(1):37-52, 2008.

D. L. Phouc, A. Polleres, C. Morbidoni,

M. Hauswirth, and G. Tummarello. Rapid
Prototyping of Semantic Mash-Ups through Semantic
Web Pipes. In Proceeedings of the 18th International
World Wide Web Conference (WWW2009), ACM,
Madrid, Spain, 2009.

P. Resnick. Internet Message Format, RFC2822. IETF
Network Working Group, 2001.
http://wuw.ietf.org/rfc/rfc2822.txt.

L. Sauermann and R. Cyganiak. Cool URIs for the
Semantic Web. W3C Interest Group Note 31 March
2008, W3C Semantic Web Education and Outreach
Interest Group, 2008.

S. Softic and M. Hausenblas. Towards Opinion Mining
Through Tracing Discussions on the Web. In Social
Data on the Web (SDoW 2008) Workshop at the 7"
International Semantic Web Conference, Karlsruhe,
Germany, 2008.

S. R. Tilley, K. Wong, M. A. D. Storey, and H. A.
Muller. Programmable Reverse Engineering. In
International Journal of Software Engineering and
Knowledge Engineering., pages 501-520, 1994.

A. Westerski, A. Igbal, G. Tummarello, and S. Decker.
Sindice Widgets: Lightweight embedding of Semantic
Web capabilities into existing user applications. In
Proceedings of the 4th International Workshop on
Semantic Web Enabled Software Engineering,
ISWC08, 2008.

